breeze.linalg

DenseMatrix

final class DenseMatrix[V] extends Matrix[V] with MatrixLike[V, DenseMatrix[V]] with Serializable

A DenseMatrix is a matrix with all elements found in an array. It is column major unless isTranspose is true, It is designed to be fast: Double- (and potentially Float-)valued DenseMatrices can be used with blas, and support operations to that effect.

Annotations
@SerialVersionUID( 1L )
Linear Supertypes
Serializable, Serializable, Matrix[V], MatrixLike[V, DenseMatrix[V]], Tensor[(Int, Int), V], TensorLike[(Int, Int), V, DenseMatrix[V]], NumericOps[DenseMatrix[V]], QuasiTensor[(Int, Int), V], AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. DenseMatrix
  2. Serializable
  3. Serializable
  4. Matrix
  5. MatrixLike
  6. Tensor
  7. TensorLike
  8. NumericOps
  9. QuasiTensor
  10. AnyRef
  11. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new DenseMatrix(rows: Int, data: Array[V], offset: Int = 0)

    Creates a matrix with the specified data array and rows.

    Creates a matrix with the specified data array and rows. columns inferred automatically

  2. new DenseMatrix(rows: Int, cols: Int, data: Array[V], offset: Int = 0)

    Creates a matrix with the specified data array, rows, and columns.

    Creates a matrix with the specified data array, rows, and columns. Data must be column major

  3. new DenseMatrix(rows: Int, cols: Int)(implicit man: ClassTag[V])

    Creates a matrix with the specified data array, rows, and columns.

  4. new DenseMatrix(rows: Int, cols: Int, data: Array[V], offset: Int, majorStride: Int, isTranspose: Boolean = false)

    rows

    number of rows

    cols

    number of cols

    data

    The underlying data. Column-major unless isTranpose is true. Mutate at your own risk. Note that this matrix may be a view of the data. Use linearIndex(r,c) to calculate indices.

    offset

    starting point into array

    majorStride

    distance separating columns (or rows, for isTranspose). should be >= rows (or cols, for isTranspose)

    isTranspose

    if true, then the matrix is considered to be "transposed" (that is, row major)

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def %[TT >: DenseMatrix[V], B, That](b: B)(implicit op: operators.OpMod.Impl2[TT, B, That]): That

    Alias for :%(b) when b is a scalar.

    Alias for :%(b) when b is a scalar.

    Definition Classes
    NumericOps
  5. final def %=[TT >: DenseMatrix[V], B](b: B)(implicit op: operators.OpMod.InPlaceImpl2[TT, B]): DenseMatrix[V]

    Alias for :%=(b) when b is a scalar.

    Alias for :%=(b) when b is a scalar.

    Definition Classes
    NumericOps
  6. final def &[TT >: DenseMatrix[V], B, That](b: B)(implicit op: operators.OpAnd.Impl2[TT, B, That]): That

    Alias for :&&(b) for all b.

    Alias for :&&(b) for all b.

    Definition Classes
    NumericOps
  7. final def &=[TT >: DenseMatrix[V], B](b: B)(implicit op: operators.OpAnd.InPlaceImpl2[TT, B]): DenseMatrix[V]

    Mutates this by element-wise and of this and b.

    Mutates this by element-wise and of this and b.

    Definition Classes
    NumericOps
  8. final def *[TT >: DenseMatrix[V], B, That](b: B)(implicit op: operators.OpMulMatrix.Impl2[TT, B, That]): That

    Matrix multiplication

    Matrix multiplication

    Definition Classes
    NumericOps
  9. final def *=[TT >: DenseMatrix[V], B](b: B)(implicit op: operators.OpMulScalar.InPlaceImpl2[TT, B]): DenseMatrix[V]

    Alias for :*=(b) when b is a scalar.

    Alias for :*=(b) when b is a scalar.

    Definition Classes
    NumericOps
  10. final def +[TT >: DenseMatrix[V], B, That](b: B)(implicit op: operators.OpAdd.Impl2[TT, B, That]): That

    Alias for :+(b) for all b.

    Alias for :+(b) for all b.

    Definition Classes
    NumericOps
  11. final def +=[TT >: DenseMatrix[V], B](b: B)(implicit op: operators.OpAdd.InPlaceImpl2[TT, B]): DenseMatrix[V]

    Alias for :+=(b) for all b.

    Alias for :+=(b) for all b.

    Definition Classes
    NumericOps
  12. final def -[TT >: DenseMatrix[V], B, That](b: B)(implicit op: operators.OpSub.Impl2[TT, B, That]): That

    Alias for :-(b) for all b.

    Alias for :-(b) for all b.

    Definition Classes
    NumericOps
  13. final def -=[TT >: DenseMatrix[V], B](b: B)(implicit op: operators.OpSub.InPlaceImpl2[TT, B]): DenseMatrix[V]

    Alias for :-=(b) for all b.

    Alias for :-=(b) for all b.

    Definition Classes
    NumericOps
  14. final def /[TT >: DenseMatrix[V], B, That](b: B)(implicit op: operators.OpDiv.Impl2[TT, B, That]): That

    Alias for :/(b) when b is a scalar.

    Alias for :/(b) when b is a scalar.

    Definition Classes
    NumericOps
  15. final def /=[TT >: DenseMatrix[V], B](b: B)(implicit op: operators.OpDiv.InPlaceImpl2[TT, B]): DenseMatrix[V]

    Alias for :/=(b) when b is a scalar.

    Alias for :/=(b) when b is a scalar.

    Definition Classes
    NumericOps
  16. final def :!=[TT >: DenseMatrix[V], B, That](b: B)(implicit op: operators.OpNe.Impl2[TT, B, That]): That

    Element-wise inequality comparator of this and b.

    Element-wise inequality comparator of this and b.

    Definition Classes
    NumericOps
  17. final def :%[TT >: DenseMatrix[V], B, That](b: B)(implicit op: operators.OpMod.Impl2[TT, B, That]): That

    Element-wise modulo of this and b.

    Element-wise modulo of this and b.

    Definition Classes
    NumericOps
  18. final def :%=[TT >: DenseMatrix[V], B](b: B)(implicit op: operators.OpMod.InPlaceImpl2[TT, B]): DenseMatrix[V]

    Mutates this by element-wise modulo of b into this.

    Mutates this by element-wise modulo of b into this.

    Definition Classes
    NumericOps
  19. final def :&[TT >: DenseMatrix[V], B, That](b: B)(implicit op: operators.OpAnd.Impl2[TT, B, That]): That

    Element-wise logical "and" operator -- returns true if corresponding elements are non-zero.

    Element-wise logical "and" operator -- returns true if corresponding elements are non-zero.

    Definition Classes
    NumericOps
  20. final def :&=[TT >: DenseMatrix[V], B](b: B)(implicit op: operators.OpAnd.InPlaceImpl2[TT, B]): DenseMatrix[V]

    Mutates this by element-wise and of this and b.

    Mutates this by element-wise and of this and b.

    Definition Classes
    NumericOps
  21. final def :*[TT >: DenseMatrix[V], B, That](b: B)(implicit op: operators.OpMulScalar.Impl2[TT, B, That]): That

    Element-wise product of this and b.

    Element-wise product of this and b.

    Definition Classes
    NumericOps
  22. final def :*=[TT >: DenseMatrix[V], B](b: B)(implicit op: operators.OpMulScalar.InPlaceImpl2[TT, B]): DenseMatrix[V]

    Mutates this by element-wise multiplication of b into this.

    Mutates this by element-wise multiplication of b into this.

    Definition Classes
    NumericOps
  23. final def :+[TT >: DenseMatrix[V], B, That](b: B)(implicit op: operators.OpAdd.Impl2[TT, B, That]): That

    Element-wise sum of this and b.

    Element-wise sum of this and b.

    Definition Classes
    NumericOps
  24. final def :+=[TT >: DenseMatrix[V], B](b: B)(implicit op: operators.OpAdd.InPlaceImpl2[TT, B]): DenseMatrix[V]

    Mutates this by element-wise addition of b into this.

    Mutates this by element-wise addition of b into this.

    Definition Classes
    NumericOps
  25. final def :-[TT >: DenseMatrix[V], B, That](b: B)(implicit op: operators.OpSub.Impl2[TT, B, That]): That

    Element-wise difference of this and b.

    Element-wise difference of this and b.

    Definition Classes
    NumericOps
  26. final def :-=[TT >: DenseMatrix[V], B](b: B)(implicit op: operators.OpSub.InPlaceImpl2[TT, B]): DenseMatrix[V]

    Mutates this by element-wise subtraction of b from this

    Mutates this by element-wise subtraction of b from this

    Definition Classes
    NumericOps
  27. final def :/[TT >: DenseMatrix[V], B, That](b: B)(implicit op: operators.OpDiv.Impl2[TT, B, That]): That

    Element-wise quotient of this and b.

    Element-wise quotient of this and b.

    Definition Classes
    NumericOps
  28. final def :/=[TT >: DenseMatrix[V], B](b: B)(implicit op: operators.OpDiv.InPlaceImpl2[TT, B]): DenseMatrix[V]

    Mutates this by element-wise division of b into this

    Mutates this by element-wise division of b into this

    Definition Classes
    NumericOps
  29. final def :<[TT >: DenseMatrix[V], B, That](b: B)(implicit op: operators.OpLT.Impl2[TT, B, That]): That

    Element-wise less=than comparator of this and b.

    Element-wise less=than comparator of this and b.

    Definition Classes
    NumericOps
  30. final def :<=[TT >: DenseMatrix[V], B, That](b: B)(implicit op: operators.OpLTE.Impl2[TT, B, That]): That

    Element-wise less-than-or-equal-to comparator of this and b.

    Element-wise less-than-or-equal-to comparator of this and b.

    Definition Classes
    NumericOps
  31. final def :=[TT >: DenseMatrix[V], B](b: B)(implicit op: operators.OpSet.InPlaceImpl2[TT, B]): DenseMatrix[V]

    Mutates this by element-wise assignment of b into this.

    Mutates this by element-wise assignment of b into this.

    Definition Classes
    NumericOps
  32. final def :==[TT >: DenseMatrix[V], B, That](b: B)(implicit op: operators.OpEq.Impl2[TT, B, That]): That

    Element-wise equality comparator of this and b.

    Element-wise equality comparator of this and b.

    Definition Classes
    NumericOps
  33. final def :>[TT >: DenseMatrix[V], B, That](b: B)(implicit op: operators.OpGT.Impl2[TT, B, That]): That

    Element-wise greater-than comparator of this and b.

    Element-wise greater-than comparator of this and b.

    Definition Classes
    NumericOps
  34. final def :>=[TT >: DenseMatrix[V], B, That](b: B)(implicit op: operators.OpGTE.Impl2[TT, B, That]): That

    Element-wise greater-than-or-equal-to comparator of this and b.

    Element-wise greater-than-or-equal-to comparator of this and b.

    Definition Classes
    NumericOps
  35. final def :^[TT >: DenseMatrix[V], B, That](b: B)(implicit op: operators.OpPow.Impl2[TT, B, That]): That

    Element-wise exponentiation of this and b.

    Element-wise exponentiation of this and b.

    Definition Classes
    NumericOps
  36. final def :^=[TT >: DenseMatrix[V], B](b: B)(implicit op: operators.OpPow.InPlaceImpl2[TT, B]): DenseMatrix[V]

    Mutates this by element-wise exponentiation of this by b.

    Mutates this by element-wise exponentiation of this by b.

    Definition Classes
    NumericOps
  37. final def :^^[TT >: DenseMatrix[V], B, That](b: B)(implicit op: operators.OpXor.Impl2[TT, B, That]): That

    Element-wise logical "xor" operator -- returns true if only one of the corresponding elements is non-zero.

    Element-wise logical "xor" operator -- returns true if only one of the corresponding elements is non-zero.

    Definition Classes
    NumericOps
  38. final def :^^=[TT >: DenseMatrix[V], B](b: B)(implicit op: operators.OpXor.InPlaceImpl2[TT, B]): DenseMatrix[V]

    Mutates this by element-wise xor of this and b.

    Mutates this by element-wise xor of this and b.

    Definition Classes
    NumericOps
  39. final def :|[TT >: DenseMatrix[V], B, That](b: B)(implicit op: operators.OpOr.Impl2[TT, B, That]): That

    Element-wise logical "or" operator -- returns true if either element is non-zero.

    Element-wise logical "or" operator -- returns true if either element is non-zero.

    Definition Classes
    NumericOps
  40. final def :|=[TT >: DenseMatrix[V], B](b: B)(implicit op: operators.OpOr.InPlaceImpl2[TT, B]): DenseMatrix[V]

    Mutates this by element-wise or of this and b.

    Mutates this by element-wise or of this and b.

    Definition Classes
    NumericOps
  41. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  42. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  43. def \[TT >: DenseMatrix[V], B, That](b: B)(implicit op: operators.OpSolveMatrixBy.Impl2[TT, B, That]): That

    Shaped solve of this by b.

    Shaped solve of this by b.

    Definition Classes
    NumericOps
  44. final def ^^[TT >: DenseMatrix[V], B, That](b: B)(implicit op: operators.OpXor.Impl2[TT, B, That]): That

    Alias for :^^(b) for all b.

    Alias for :^^(b) for all b.

    Definition Classes
    NumericOps
  45. final def ^^=[TT >: DenseMatrix[V], B](b: B)(implicit op: operators.OpXor.InPlaceImpl2[TT, B]): DenseMatrix[V]

    Mutates this by element-wise xor of this and b.

    Mutates this by element-wise xor of this and b.

    Definition Classes
    NumericOps
  46. def active: TensorActive[(Int, Int), V, DenseMatrix[V]]

    Definition Classes
    TensorLike
  47. def activeIterator: Iterator[((Int, Int), V)]

    Definition Classes
    DenseMatrixQuasiTensor
  48. def activeKeysIterator: Iterator[(Int, Int)]

    Definition Classes
    DenseMatrixQuasiTensor
  49. def activeSize: Int

    Definition Classes
    DenseMatrixTensorLike
  50. def activeValuesIterator: Iterator[V]

    Definition Classes
    DenseMatrixQuasiTensor
  51. def allVisitableIndicesActive: Boolean

  52. def apply(row: Int, col: Int): V

    Definition Classes
    DenseMatrixMatrix
  53. final def apply(i: (Int, Int)): V

    Definition Classes
    MatrixTensorLikeQuasiTensor
  54. def apply[Slice1, Slice2, Result](slice1: Slice1, slice2: Slice2)(implicit canSlice: CanSlice2[DenseMatrix[V], Slice1, Slice2, Result]): Result

    Method for slicing that is tuned for Matrices.

    Method for slicing that is tuned for Matrices.

    returns

    Definition Classes
    TensorLike
  55. def apply[Result](a: (Int, Int), slice: (Int, Int)*)(implicit canSlice: CanSlice[DenseMatrix[V], Seq[(Int, Int)], Result]): Result

    Slice a sequence of elements.

    Slice a sequence of elements. Must be at least 2.

    Result
    a
    slice
    canSlice
    returns

    Definition Classes
    TensorLike
  56. def apply[Slice, Result](slice: Slice)(implicit canSlice: CanSlice[DenseMatrix[V], Slice, Result]): Result

    method for slicing a tensor.

    method for slicing a tensor. For instance, DenseVectors support efficient slicing by a Range object.

    returns

    Definition Classes
    TensorLike
  57. def argmax(implicit ord: Ordering[V]): (Int, Int)

    Definition Classes
    QuasiTensor
  58. def argmin(implicit ord: Ordering[V]): (Int, Int)

    Definition Classes
    QuasiTensor
  59. def argsort(implicit ord: Ordering[V]): IndexedSeq[(Int, Int)]

    Definition Classes
    QuasiTensor
  60. def argtopk(k: Int)(implicit ordering: Ordering[V]): IndexedSeq[(Int, Int)]

    Returns the k indices with maximum value.

    Returns the k indices with maximum value. (NOT absolute value.)

    k

    how many to return

    ordering
    returns

    Definition Classes
    QuasiTensor
  61. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  62. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  63. val cols: Int

    number of cols

    number of cols

    Definition Classes
    DenseMatrixMatrix
  64. def copy: DenseMatrix[V]

    Definition Classes
    DenseMatrixMatrix
  65. val data: Array[V]

    The underlying data.

    The underlying data. Column-major unless isTranpose is true. Mutate at your own risk. Note that this matrix may be a view of the data. Use linearIndex(r,c) to calculate indices.

  66. def delete(cols: Seq[Int], axis: _1.type): DenseMatrix[V]

  67. def delete(rows: Seq[Int], axis: _0.type): DenseMatrix[V]

  68. def delete(col: Int, axis: _1.type): DenseMatrix[V]

  69. def delete(row: Int, axis: _0.type): DenseMatrix[V]

  70. final def dot[TT >: DenseMatrix[V], B, BB >: B, That](b: B)(implicit op: operators.OpMulInner.Impl2[TT, BB, That]): That

    Inner product of this and b.

    Inner product of this and b.

    Definition Classes
    NumericOps
  71. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  72. def equals(p1: Any): Boolean

    Definition Classes
    DenseMatrix → AnyRef → Any
  73. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  74. def findAll(f: (V) ⇒ Boolean): IndexedSeq[(Int, Int)]

    Returns all indices k whose value satisfies a predicate.

    Returns all indices k whose value satisfies a predicate.

    Definition Classes
    QuasiTensor
  75. def flatten(view: View = View.Prefer): DenseVector[V]

    Converts this matrix to a DenseVector (column-major) If view = true (or View.

    Converts this matrix to a DenseVector (column-major) If view = true (or View.Require), throws an exception if we cannot return a view. otherwise returns a view. If view == false (or View.Copy) returns a copy If view == View.Prefer (the default), returns a view if possible, otherwise returns a copy.

    Views are only possible (if(isTranspose) majorStride == cols else majorStride == rows) == true

  76. def forall(fn: ((Int, Int), V) ⇒ Boolean): Boolean

    Returns true if and only if the given predicate is true for all elements.

    Returns true if and only if the given predicate is true for all elements.

    Definition Classes
    TensorLike
  77. def forallValues(fn: (V) ⇒ Boolean): Boolean

    Returns true if and only if the given predicate is true for all elements.

    Returns true if and only if the given predicate is true for all elements.

    Definition Classes
    TensorLike
  78. def foreachKey[U](fn: ((Int, Int)) ⇒ U): Unit

    Applies the given function to each key in the tensor.

    Applies the given function to each key in the tensor.

    Definition Classes
    TensorLike
  79. def foreachPair[U](fn: ((Int, Int), V) ⇒ U): Unit

    Applies the given function to each key and its corresponding value.

    Applies the given function to each key and its corresponding value.

    Definition Classes
    TensorLike
  80. def foreachValue[U](fn: (V) ⇒ U): Unit

    Applies the given function to each value in the map (one for each element of the domain, including zeros).

    Applies the given function to each value in the map (one for each element of the domain, including zeros).

    Definition Classes
    TensorLike
  81. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  82. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  83. def indexAt(i: Int): Int

  84. def isActive(i: Int): Boolean

  85. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  86. val isTranspose: Boolean

    if true, then the matrix is considered to be "transposed" (that is, row major)

  87. def iterator: Iterator[((Int, Int), V)]

    Definition Classes
    MatrixQuasiTensor
  88. def keySet: Set[(Int, Int)]

    Definition Classes
    MatrixQuasiTensor
  89. def keys: TensorKeys[(Int, Int), V, DenseMatrix[V]]

    Definition Classes
    TensorLike
  90. def keysIterator: Iterator[(Int, Int)]

    Definition Classes
    MatrixQuasiTensor
  91. final def linearIndex(row: Int, col: Int): Int

    Calculates the index into the data array for row and column

  92. val majorStride: Int

    distance separating columns (or rows, for isTranspose).

    distance separating columns (or rows, for isTranspose). should be >= rows (or cols, for isTranspose)

  93. def map[E2, That](fn: (V) ⇒ E2)(implicit canMapValues: CanMapValues[DenseMatrix[V], V, E2, That]): That

    Definition Classes
    MatrixLike
  94. def mapActivePairs[TT >: DenseMatrix[V], O, That](f: ((Int, Int), V) ⇒ O)(implicit bf: CanMapKeyValuePairs[TT, (Int, Int), V, O, That]): That

    Maps all active key-value pairs values.

    Maps all active key-value pairs values.

    Definition Classes
    TensorLike
  95. def mapActiveValues[TT >: DenseMatrix[V], O, That](f: (V) ⇒ O)(implicit bf: CanMapValues[TT, V, O, That]): That

    Maps all non-zero values.

    Maps all non-zero values.

    Definition Classes
    TensorLike
  96. def mapPairs[TT >: DenseMatrix[V], O, That](f: ((Int, Int), V) ⇒ O)(implicit bf: CanMapKeyValuePairs[TT, (Int, Int), V, O, That]): That

    Creates a new map containing a transformed copy of this map.

    Creates a new map containing a transformed copy of this map.

    Definition Classes
    TensorLike
  97. def mapValues[TT >: DenseMatrix[V], O, That](f: (V) ⇒ O)(implicit bf: CanMapValues[TT, V, O, That]): That

    Creates a new map containing a transformed copy of this map.

    Creates a new map containing a transformed copy of this map.

    Definition Classes
    TensorLike
  98. def max(implicit ord: Ordering[V]): V

    Definition Classes
    QuasiTensor
  99. def min(implicit ord: Ordering[V]): V

    Definition Classes
    QuasiTensor
  100. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  101. final def norm[TT >: DenseMatrix[V], B, R](b: B)(implicit op: norm.Impl2[TT, B, R]): R

    Represents the norm of this vector

    Represents the norm of this vector

    Definition Classes
    NumericOps
  102. final def norm[TT >: DenseMatrix[V], R]()(implicit op: norm.Impl[TT, R]): R

    Represents the "natural" norm of this vector, for types that don't support arbitrary norms

    Represents the "natural" norm of this vector, for types that don't support arbitrary norms

    Definition Classes
    NumericOps
  103. final def notify(): Unit

    Definition Classes
    AnyRef
  104. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  105. val offset: Int

    starting point into array

  106. def pairs: TensorPairs[(Int, Int), V, DenseMatrix[V]]

    Definition Classes
    TensorLike
  107. def repr: DenseMatrix[V]

    Definition Classes
    DenseMatrixNumericOps
  108. def reshape(rows: Int, cols: Int, view: View = View.Prefer): DenseMatrix[V]

    Reshapes this matrix to have the given number of rows and columns If view = true (or View.

    Reshapes this matrix to have the given number of rows and columns If view = true (or View.Require), throws an exception if we cannot return a view. otherwise returns a view. If view == false (or View.Copy) returns a copy If view == View.Prefer (the default), returns a view if possible, otherwise returns a copy.

    Views are only possible (if(isTranspose) majorStride == cols else majorStride == rows) == true

    rows * cols must equal size, or cols < 0 && (size / rows * rows == size)

    rows

    the number of rows

    cols

    the number of columns, or -1 to auto determine based on size and rows

  109. val rows: Int

    number of rows

    number of rows

    Definition Classes
    DenseMatrixMatrix
  110. def size: Int

    Definition Classes
    MatrixTensorLike
  111. def sum(implicit num: Numeric[V]): V

    Definition Classes
    QuasiTensor
  112. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  113. final def t[TT >: DenseMatrix[V], That, Slice1, Slice2, Result](a: Slice1, b: Slice2)(implicit op: CanTranspose[TT, That], canSlice: CanSlice2[That, Slice1, Slice2, Result]): Result

    A transposed view of this object, followed by a slice.

    A transposed view of this object, followed by a slice. Sadly frequently necessary.

    Definition Classes
    NumericOps
  114. final def t[TT >: DenseMatrix[V], That](implicit op: CanTranspose[TT, That]): That

    A transposed view of this object.

    A transposed view of this object.

    Definition Classes
    NumericOps
  115. def toDenseMatrix(implicit cm: ClassTag[V], dfv: DefaultArrayValue[V]): DenseMatrix[V]

    Definition Classes
    DenseMatrixMatrix
  116. def toDenseVector: DenseVector[V]

    Converts this matrix to a DenseVector (column-major)

  117. def toString(): String

    Definition Classes
    Matrix → AnyRef → Any
  118. def toString(maxLines: Int = Terminal.terminalHeight - 3, maxWidth: Int = Terminal.terminalWidth): String

    Definition Classes
    Matrix
  119. def trace(implicit numeric: Numeric[V]): V

    Computes the sum along the diagonal.

  120. final def unary_![TT >: DenseMatrix[V], That](implicit op: operators.OpNot.Impl[TT, That]): That

    Definition Classes
    NumericOps
  121. final def unary_-[TT >: DenseMatrix[V], That](implicit op: operators.OpNeg.Impl[TT, That]): That

    Definition Classes
    NumericOps
  122. def update(row: Int, col: Int, v: V): Unit

    Definition Classes
    DenseMatrixMatrix
  123. final def update(i: (Int, Int), e: V): Unit

    Definition Classes
    MatrixTensorLikeQuasiTensor
  124. def valueAt(i: Int): V

  125. def values: TensorValues[(Int, Int), V, DenseMatrix[V]]

    Definition Classes
    TensorLike
  126. def valuesIterator: Iterator[V]

    Definition Classes
    MatrixQuasiTensor
  127. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  128. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  129. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  130. final def |[TT >: DenseMatrix[V], B, That](b: B)(implicit op: operators.OpOr.Impl2[TT, B, That]): That

    Alias for :||(b) for all b.

    Alias for :||(b) for all b.

    Definition Classes
    NumericOps
  131. final def |=[TT >: DenseMatrix[V], B](b: B)(implicit op: operators.OpOr.InPlaceImpl2[TT, B]): DenseMatrix[V]

    Mutates this by element-wise or of this and b.

    Mutates this by element-wise or of this and b.

    Definition Classes
    NumericOps

Deprecated Value Members

  1. def all(implicit semi: Semiring[V]): Boolean

    Returns true if all elements are non-zero

    Returns true if all elements are non-zero

    Definition Classes
    QuasiTensor
    Annotations
    @deprecated
    Deprecated

    (Since version 0.6) Use breeze.linalg.all instead

  2. def any(implicit semi: Semiring[V]): Boolean

    Returns true if some element is non-zero

    Returns true if some element is non-zero

    Definition Classes
    QuasiTensor
    Annotations
    @deprecated
    Deprecated

    (Since version 0.6) Use breeze.linalg.any instead

Inherited from Serializable

Inherited from Serializable

Inherited from Matrix[V]

Inherited from MatrixLike[V, DenseMatrix[V]]

Inherited from Tensor[(Int, Int), V]

Inherited from TensorLike[(Int, Int), V, DenseMatrix[V]]

Inherited from NumericOps[DenseMatrix[V]]

Inherited from QuasiTensor[(Int, Int), V]

Inherited from AnyRef

Inherited from Any

Ungrouped