breeze.stats.distributions

Dirichlet

case class Dirichlet[T, I](params: T)(implicit space: TensorSpace[T, I, Double], rand: RandBasis = Rand, dav: DefaultArrayValue[T]) extends ContinuousDistr[T] with Product with Serializable

Represents a Dirichlet distribution, the conjugate prior to the multinomial.

Linear Supertypes
Serializable, Serializable, Product, Equals, ContinuousDistr[T], Rand[T], Density[T], AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. Dirichlet
  2. Serializable
  3. Serializable
  4. Product
  5. Equals
  6. ContinuousDistr
  7. Rand
  8. Density
  9. AnyRef
  10. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new Dirichlet(params: T)(implicit space: TensorSpace[T, I, Double], rand: RandBasis = Rand, dav: DefaultArrayValue[T])

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. def apply(x: T): Double

    Returns the unnormalized value of the measure

    Returns the unnormalized value of the measure

    Definition Classes
    ContinuousDistrDensity
  7. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  8. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. def condition(p: (T) ⇒ Boolean): Rand[T]

    Definition Classes
    Rand
  10. def draw(): T

    Returns a Multinomial distribution over the iterator

    Returns a Multinomial distribution over the iterator

    Definition Classes
    DirichletRand
  11. def drawOpt(): Option[T]

    Overridden by filter/map/flatmap for monadic invocations.

    Overridden by filter/map/flatmap for monadic invocations. Basically, rejeciton samplers will return None here

    Definition Classes
    Rand
  12. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  13. def filter(p: (T) ⇒ Boolean): Rand[T]

    Definition Classes
    Rand
  14. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  15. def flatMap[E](f: (T) ⇒ Rand[E]): Rand[E]

    Converts a random sampler of one type to a random sampler of another type.

    Converts a random sampler of one type to a random sampler of another type. Examples: randInt(10).flatMap(x => randInt(3 * x.asInstanceOf[Int]) gives a Rand[Int] in the range [0,30] Equivalently, for(x <- randInt(10); y <- randInt(30 *x)) yield y

    f

    the transform to apply to the sampled value.

    Definition Classes
    Rand
  16. def foreach(f: (T) ⇒ Unit): Unit

    Samples one element and qpplies the provided function to it.

    Samples one element and qpplies the provided function to it. Despite the name, the function is applied once. Sample usage:

     for(x <- Rand.uniform) { println(x) } 
    

    f

    the function to be applied

    Definition Classes
    Rand
  17. def get(): T

    Definition Classes
    Rand
  18. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  19. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  20. def logApply(x: T): Double

    Returns the log unnormalized value of the measure

    Returns the log unnormalized value of the measure

    Definition Classes
    ContinuousDistrDensity
  21. def logDraw(): T

    Returns logNormalized probabilities.

    Returns logNormalized probabilities. Use this if you're worried about underflow

  22. val logNormalizer: Double

    Definition Classes
    DirichletContinuousDistr
  23. def logPdf(x: T): Double

    Definition Classes
    ContinuousDistr
  24. def map[E](f: (T) ⇒ E): Rand[E]

    Converts a random sampler of one type to a random sampler of another type.

    Converts a random sampler of one type to a random sampler of another type. Examples: uniform.map(_*2) gives a Rand[Double] in the range [0,2] Equivalently, for(x <- uniform) yield 2*x

    f

    the transform to apply to the sampled value.

    Definition Classes
    Rand
  25. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  26. final def notify(): Unit

    Definition Classes
    AnyRef
  27. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  28. val params: T

  29. def pdf(x: T): Double

    Returns the probability density function at that point.

    Returns the probability density function at that point.

    Definition Classes
    ContinuousDistr
  30. def sample(n: Int): IndexedSeq[T]

    Gets n samples from the distribution.

    Gets n samples from the distribution.

    Definition Classes
    Rand
  31. def sample(): T

    Gets one sample from the distribution.

    Gets one sample from the distribution. Equivalent to get()

    Definition Classes
    Rand
  32. def samples: Iterator[T]

    An infinitely long iterator that samples repeatedly from the Rand

    An infinitely long iterator that samples repeatedly from the Rand

    returns

    an iterator that repeatedly samples

    Definition Classes
    Rand
  33. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  34. def unnormalizedDraw(): T

    Returns unnormalized probabilities for a Multinomial distribution.

  35. def unnormalizedLogPdf(m: T): Double

    Returns the log pdf function of the Dirichlet up to a constant evaluated at m

    Returns the log pdf function of the Dirichlet up to a constant evaluated at m

    Definition Classes
    DirichletContinuousDistr
  36. def unnormalizedPdf(x: T): Double

    Returns the probability density function up to a constant at that point.

    Returns the probability density function up to a constant at that point.

    Definition Classes
    ContinuousDistr
  37. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  38. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  39. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  40. def withFilter(p: (T) ⇒ Boolean): Rand[T]

    Definition Classes
    Rand

Inherited from Serializable

Inherited from Serializable

Inherited from Product

Inherited from Equals

Inherited from ContinuousDistr[T]

Inherited from Rand[T]

Inherited from Density[T]

Inherited from AnyRef

Inherited from Any

Ungrouped