object
eig extends UFunc
Type Members
-
type
Impl[V, VR] = UImpl[eig.this.type, V, VR]
-
type
Impl2[V1, V2, VR] = UImpl2[eig.this.type, V1, V2, VR]
-
type
Impl3[V1, V2, V3, VR] = UImpl3[eig.this.type, V1, V2, V3, VR]
-
-
-
Value Members
-
final
def
!=(arg0: AnyRef): Boolean
-
final
def
!=(arg0: Any): Boolean
-
final
def
##(): Int
-
final
def
==(arg0: AnyRef): Boolean
-
final
def
==(arg0: Any): Boolean
-
-
final
def
apply[V1, V2, V3, VR](v1: V1, v2: V2, v3: V3)(implicit impl: Impl3[V1, V2, V3, VR]): VR
-
final
def
apply[V1, V2, VR](v1: V1, v2: V2)(implicit impl: Impl2[V1, V2, VR]): VR
-
final
def
apply[V, VR](v: V)(implicit impl: Impl[V, VR]): VR
-
final
def
asInstanceOf[T0]: T0
-
implicit
def
canZipMapValuesImpl[T, V1, VR, U](implicit handhold: HandHold[T, V1], impl: Impl2[V1, V1, VR], canZipMapValues: CanZipMapValues[T, V1, VR, U]): Impl2[T, T, U]
-
def
clone(): AnyRef
-
final
def
eq(arg0: AnyRef): Boolean
-
def
equals(arg0: Any): Boolean
-
def
finalize(): Unit
-
final
def
getClass(): Class[_]
-
def
hashCode(): Int
-
final
def
inPlace[V, V2, V3](v: V, v2: V2, v3: V3)(implicit impl: generic.UFunc.InPlaceImpl3[eig.this.type, V, V2, V3]): Unit
-
final
def
inPlace[V, V2](v: V, v2: V2)(implicit impl: generic.UFunc.InPlaceImpl2[eig.this.type, V, V2]): Unit
-
final
def
inPlace[V](v: V)(implicit impl: generic.UFunc.InPlaceImpl[eig.this.type, V]): Unit
-
final
def
isInstanceOf[T0]: Boolean
-
final
def
ne(arg0: AnyRef): Boolean
-
final
def
notify(): Unit
-
final
def
notifyAll(): Unit
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
-
def
toString(): String
-
final
def
wait(): Unit
-
final
def
wait(arg0: Long, arg1: Int): Unit
-
final
def
wait(arg0: Long): Unit
Inherited from AnyRef
Inherited from Any
Eigenvalue decomposition (right eigenvectors)
This function returns the real and imaginary parts of the eigenvalues, and the corresponding eigenvectors. For most (?) interesting matrices, the imaginary part of all eigenvalues will be zero (and the corresponding eigenvectors will be real). Any complex eigenvalues will appear in complex-conjugate pairs, and the real and imaginary components of the eigenvector for each pair will be in the corresponding columns of the eigenvector matrix. Take the complex conjugate to find the second eigenvector.
Based on EVD.java from MTJ 0.9.12